重心是什么的交点
重心是什么的交点是重心:三条边的中线交于一点;垂心:三角形的三条高(所在直线)交于一点;外心:三角形的三条边的垂直平分线交于一点;内心:三角形的三条内角平分线交于一点的。
那么关于重心是什么的交点以及重心是什么的交点有什么性质,重心,垂心,内心,外心的定义,重心的性质,垂心是什么的交点,三角形重心有什么性质等问题,小编将为你整理以下的知识答案:
重心是什么的交点
重心是什么的交点是重心:三条边的中线交于一点;垂心:三角形的三条高(所在直线)交于一点;外心:三角形的三条边的垂直平分线交于一点;内心:三角形的三条内角平分线交于一点的。
重心,
是在重力场中,物体处于任何方位时所有各组成支点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心。
不规则物体的重心,可以用悬挂法来确定。
物体的重心,不一定在物体上。
另外,重心可以指事情的中心或主要部分。
重心:
三条边的中线交于一点;垂心:三角形的三条高(所在直线)交于一点;外心:三角形的三条边的垂直平分线交于一点;内心:三角形的三条内角平分线交于一点。三角形的重心、外心、垂心、内心、旁心称为三角形的五心,它们都是三角形的重要相关点。旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点。
重心是什么的交点?
重心是三角形三边中线的交点。
重心到顶点的距离与重心到对边中点的距离之比为2:1,重心和三角形3个顶点组成的3个三角形面积相等,重心到三角形3个顶点距离的平方和最小。
三角形重心是三角形三中线的交点。
当几何体为匀质物体且重力场均匀时,重心与该形中心重合。
扩展资料:
证明一
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
例:已知:△ABC,E、F是AB,AC的中点。
EC、FB交于G。
求证:EG=1/2CG
证明:过E作EH∥BF交AC于H。
∵AE=BE,EH//BF
∴AH=HF=1/2AF(平行线分线段成比例定理)
又∵ AF=CF
∴HF=1/2CF
∴HF:CF=1/2
∵EH∥BF
∴EG:CG=HF:CF=1/2
∴EG=1/2CG
方法二 连接EF
利用三角形相似
求证:EG=1/2CG 即证明EF=1/2BC
利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC
2、重心和三角形3个顶点组成的3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA、BOB、COC分别为a、b、c边上的中线。
根据重心性质知:
OA=1/3AA
OB=1/3BB
OC=1/3CC
过O,A分别作a边上高OH,AH
可知OH=1/3AH
则,S△BOC=1/2×OHa=1/2×1/3AHa=1/3S△ABC
同理可证S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB
版权声明:本文来源于互联网,不代表本站立场与观点,子健常识网无任何盈利行为和商业用途,如有错误或侵犯利益请联系我们。