1. 首页 > 小常识

tan135度等于多少

  tan135度等于多少?是-1的。关于tan135度等于多少以及tan135度等于多少派,tan135度等于多少斜率,tan135度等于多少弧度,tan150度等于多少,tan120度等于多少等问题,小编将为你整理以下的知识答案:

tan135度等于多少

tan135度等于多少

  是-1的。

  在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。

  三角函数是数学中属于初等函数中的超越函数的一类函数。

   它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

  通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。

  另一种定义是在直角三角形中,但并不完全。

  现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

  由于三角函数的周期性,它并不具有单值函数意义上的反函数。

  三角函数在复数中有较为重要的应用。

  在物理学中,三角函数也是常用的工具。

  在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。

  即:tanA=∠A的对边/∠A的邻边。

三角函数(数学名词)

  三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

  也可以等价地用与单位圆有关的各种线段的长度来定义。

  三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

  在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

  常见的三角函数包括正弦函数、余弦函数和正切函数。

  在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

  不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

  三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

  另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。

  常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

  三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

  三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

  更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

tan135度等于多少?求过程,详细些。。。谢谢。。。

  tan135度等于-1。

  第一步,由公式tan(180°-α)= -tanα,得出tanα=-tan(180°-α);

  第二步,将135度带入tanα=-tan(180°-α),得出tan135°=-tan(180°-135°)=-tan45°

  第三步,因为tan45°=1,所以tan135°=-1。

  拓展资料:

  1.   三角函数十组诱导公式:

  2.三角函数(数学名词):

  三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

  也可以等价地用与单位圆有关的各种线段的长度来定义。

  三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

  在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

  常见的三角函数包括正弦函数、余弦函数和正切函数。

  在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

  不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

  三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

  另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。

  常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

  三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

  三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

  更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

  参考资料:三角函数百度百科

版权声明:本文来源于互联网,不代表本站立场与观点,子健常识网无任何盈利行为和商业用途,如有错误或侵犯利益请联系我们。

联系我们

在线咨询:点击这里给我发消息

微信号:79111873