1. 首页 > 小常识

原函数公式

  原函数公式?是原函数:y=c(c为常数);导数:y'=o的。关于原函数公式以及原函数公式表,导数的原函数公式,知道导函数求原函数公式,定积分求原函数公式,指数函数的原函数公式等问题,小编将为你整理以下的知识答案:

原函数公式

原函数公式

  是原函数:y=c(c为常数);导数:y'=o的。

  原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

  1、原函数:y=c(c为常数)

  导数:y'=o

  2、原函数:y=x^n

  导数:y'=nx^(n-1)

  3、原函数:y=tanx

  导数:y'=1/cos^2x

  4、原函数:y=cotx

  导数:y'=-1/sin个2x

  5、原函数:y=sinx

  导数:y'=cosx

  若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为原函数存在定理。

  函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,

  故若函数f(x)有原函数,那么其原函数为无穷多个。

  几何意义和力学意义

  设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。

扩展

一般对数函数的原函数(不定积分)

  ∫lnxdx

  =xlnx-∫xd(lnx)

  =xlnx-∫(x*1/x)dx

  =xlnx-∫dx

  =xlnx-x+C

  ∫㏒b(x)dx,以底数为b的对数

  =∫(lnx/lnb)dx

  =(1/lnb)∫lnxdx

  =(1/lnb)(xlnx-x)+C

  =(xlnx-x)/lnb+C

不定积分的公式

  ∫ a dx = ax + C,a和C都是常数

  ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

  ∫ 1/x dx = ln|x| + C

  ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

  ∫ e^x dx = e^x + C

  ∫ cosx dx = sinx + C

  ∫ sinx dx = - cosx + C

  ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

  ∫ tanx dx = - ln|cosx| + C = ln|secx| + C

  ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

  ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C

  ∫ sec^2(x) dx = tanx + C

  ∫ csc^2(x) dx = - cotx + C

  ∫ secxtanx dx = secx + C

  ∫ cscxcotx dx = - cscx + C

  ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

  ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

  ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

  ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

  ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C

  ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C

  ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

原函数公式表求原函数?

  公式法、换元法、分步法、综合法

  1、公式法 例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。

  2、换元法 对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。

   例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。

  3、分步法 对于∫u'(x)v(x)dx的计算有公式: ∫u'vdx=uv-∫uv'dx(u,v为u(x),v(x)的简写) 例如计算∫xlnxdx,易知x=(x^2/2)'则: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通过对1/4(2x^2lnx-x^2)求导即可得到xlnx。

  4、综合法 综合法要求对换元与分步灵活运用,如计算∫e^(-x)xdx。

版权声明:本文来源于互联网,不代表本站立场与观点,子健常识网无任何盈利行为和商业用途,如有错误或侵犯利益请联系我们。

联系我们

在线咨询:点击这里给我发消息

微信号:79111873